

Regio- and stereoselective installation of alkyl groups onto *cis* 4-cyclopentene-1,3-diol monoacetate by using reagents derived from alkylmagnesium halides

Michiko Ito, Modachur G. Murugesh and Yuichi Kobayashi*

Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan

Received 29 September 2000; revised 1 November 2000; accepted 2 November 2000

Abstract—Reaction of *cis* 4-cyclopentene-1,3-diol monoacetate with alkyl reagents derived from RMgX and CuCN furnished either *trans* 4-alkyl-2-cyclopenten-1-ols (1,4-isomers) or *trans* 2-alkyl-3-cyclopenten-1-ols (1,2-isomers) depending upon the stoichiometry of RMgX/CuCN and the solvents used (Et₂O or THF). © 2001 Elsevier Science Ltd. All rights reserved.

The ready availability of 4-cyclopentene-1,3-diol monoacetate (1) in an enantiomerically enriched form of >95% ee as well as the chemically stable nature of 1 makes it attractive as a starting compound for the synthesis of cyclopentanoids. Regio- and stereoselective installation of carbon-based nucleophiles onto the cyclopentene ring is a critical step to this end. It was surprising, therefore, to find that only the palladium-catalyzed reaction with soft nucleophiles² and the Heck reaction³ have been applied to 1 and the derivatives, when we commenced the investigation of this issue with

aryl- and alkenyl borates, which resulted in the development of the regioselective and stereospecific formation of *trans* 1,4-isomers **2** possessing an sp^2 -carbon-based group as the major regioisomers (Eq. (1)).^{5–7} Thereafter, products **2** have been utilized in the synthesis of the primary PG intermediates,⁶ aristeromycin,⁸ and brefeldin.⁹ Further investigation with the borates, however, was unsuccessful for installation of an alkyl group. We then explored reagents based on copper.¹⁰ Herein, we present the first achievement of installation of the *alkyl* groups onto **1** to produce *either*

ref. 5 and 6
$$\begin{bmatrix} \mathbf{R}^\mathsf{T} & \mathbf{O} & \mathbf{Me} \\ \mathbf{B} & \mathbf{O} & \mathbf{Me} \end{bmatrix}^{\bigodot} \mathbf{Li}^{\textcircled{+}} \quad \mathbf{R}^\mathsf{T} \text{: aryl and alkenyl groups}$$
 giving **2**

present investigation

R^T-MgX/CuX R^T: alkyl group giving either 2 or 3

for **1–3**: **a**, *n*-Bu; **b**, Et; **c**, (CH₂)₃Ph; **d**, (CH₂)₉CH=CH₂; **e**, *c*-C₆H₁₁

Keywords: alkylation; copper and compounds; coupling reactions; cyclopentenes; Grignard reactions/reagents.

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01983-3

^{*} Corresponding author. Tel./fax: +81 45 924 5789; e-mail: ykobayas@bio.titech.ac.jp

regioisomer in a trans stereofashion using the reagents derived from alkylmagnesium halides (RMgX) and CuX (Eq. (1)).

A butyl group (Bu) was chosen as a representative alkyl group for the present investigation with 1. Reactions were examined with reagents derived in situ from BuMgX (X = Cl, Br) and CuX (X = CN, I) (in stoichiometric or catalytic amounts) in THF or Et₂O at temperatures between -18°C and room temperature (Eq. (2)). We found that, in most cases, the reactions were completed within 2-5 h (monitored by TLC), furnishing the regioisomers 2a and/or 3a. The regioselectivity of 2a/3a was dependent upon the halogen atom in BuMgX, the stoichiometry of BuMgX/CuX, and the solvent used. The corresponding cis isomers were not detected in all cases by ¹H NMR (300 MHz) spectroscopy. 11 Results with the reagents derived from BuMgCl and BuMgBr are summarized in Tables 1 and 2, respectively, in which 'calculated yields' (regioselectivity × combined yield) are given to assess the efficiency of the reactions.

Reaction of 1 with BuCu(CN)(MgCl) in THF at 0°C afforded the *trans* 1,2-isomer 3a (Table 1, entry 1) with a high efficiency of 90% calculated yield. On the other hand, Bu₂Cu(CN)(MgCl)₂ and BuMgCl/CuCN (10 mol%) furnished the 1,4-isomer 2a with calculated yields of 87 and 94%, respectively (entries 2 and 3). Surprisingly, the regioselectivity for Bu₂Cu(CN)-(MgCl)₂ and BuMgCl/CuCN (cat.) was reversed in Et₂O to afford 3a, and their efficiency in giving 3a was among the best of the reactions (entries 5 and 6). On the other hand, BuCu(CN)(MgCl) in Et₂O produced a mixture of unidentified compounds, although 3a was a major product (entry 4). We also examined CuI-based reagents (entries 7–10). In all cases, the same sense of selectivity as for the CuCN-based reagents was ob-

Entry	Reagent ^a	Solvent	Temp. (°C)	Time (h)	Ratio of 2a:3ab	Combined yield (%) ^c	Calcd yield (%) ^d	
							2a	3a
1	BuCu(CN)(MgCl)	THF	0	4	7:93	97	7	90 (89)
2	Bu ₂ Cu(CN)(MgCl) ₂	THF	-18	3	93:7	94	87	7
3	BuMgCl, CuCN	THF	-18	5	94:6	100	94 (85)	6
	(cat.)e							
4	BuCu(CN)(MgCl)	Et ₂ O	rt	5	14:86	37	5	32
5	Bu ₂ Cu(CN)(MgCl) ₂	Et ₂ O	-18	2	7:93	85	6	79
6	BuMgCl, CuCN	Et ₂ O	-18	2	8:92	82	7	75
	(cat.)e							
7	BuCu (from CuI)	THF	0	4	40:60	22^{f}	9	13
8	BuMgCl, CuI (cat.)e	THF	-18	3	92:8	100	92	8
9	BuCu (from CuI)	Et ₂ O	0	5	13:87	$22^{\rm f}$	3	19
10	BuMgCl, CuI (cat.)e	Et_2O	-18	5	19:81	85	16	69

^a Three (3) equiv.

Table 2. Reaction of 1 with reagents derived from BuMgBr

Entry	Reagent ^a	Solvent	Temp. (°C)	Time (h)	Ratio of 2:3 ^b	Combined yield (%) ^c	Calcd yield (%)	
							2	3 ^b
1	BuCu(CN)(MgBr)	THF	0	5	10:90	89	9	80
2	$Bu_2Cu(CN)(MgBr)_2$	THF	-18	3	71:29	98	70	28
3	BuMgBr, CuCN (cat.)d	THF	-18	3	73:27	96	70	26
4	BuCu(CN)(MgBr)	Et ₂ O	0	4	7:93	71°	5	66
5	Bu ₂ Cu(CN)(MgBr) ₂	Et ₂ O	-18	3	6:94	88	5	83
6	BuMgBr, CuCN (cat.)d	Et ₂ O	-18	3	5:95	94	5	89

^a Three (3) equiv.

^b Determined by ¹H NMR.

^c Determined by ¹H NMR with pyridine.

^d Isolated yields are given in parentheses.

e 10 mol%.

f Acetate 1 was recovered.

^b Determined by ¹H NMR.

^c Determined by ¹H NMR with pyridine.

^d 10 mol%.

e Acetate 1 was recovered.

served. However, the efficiency was good only in the case with BuMgCl/CuI (cat.) in THF giving the 1,4-isomer **2a** (entry 8), while the reagents in Et₂O showed moderate selectivity (entry 10). Reactions with BuCu, derived from CuI and BuMgCl, were not completed both in THF and in Et₂O (entries 7 and 9).

The BuMgBr-based reagents, BuCu(CN)(MgBr), Bu₂Cu(CN)(MgBr)₂, BuMgBr/CuCN (10 mol%), showed the same tendency for the selectivity (2a/3a) and a similar reactivity (Table 2). Among them, good efficiency furnishing the 1,2-isomer 3a was recorded with BuCu(CN)(MgBr) in THF, Bu₂Cu(CN)(MgBr)₂ in Et₂O, and BuMgBr/CuCN (cat.) in Et₂O (entries 1, 5, and 6). However, the selectivity and/or the yield were somewhat lower in entries 2–4.

The efficient reaction conditions developed above (Tables 1 and 2) were applied to other alkylmagnesium halides (Eq. (1)). As summarized in Table 3, Et, (CH₂)₃Ph, (CH₂)₉CH=CH₂, and *c*-C₆H₁₁ groups were installed onto **1** with good efficiency furnishing 1,4-isomers **2b**-**e** or 1,2-isomers **3b**-**e** depending upon the conditions. In these experiments, no *cis* products were detected by ¹H NMR spectroscopy.

Previously, 1,4-isomers **2** have been synthesized by the reaction of cyclopentadiene monoepoxide (**4**) with R^TCu(CN)Li, ^{12a} and [R^TZnMe₂]Li/MeCu(CN)Li (cat.). ^{12b} On the other hand, hydroboration of 5-alkyl-1,3-cyclopentadienes with (+)- or (-)-(Ipc)₂BH furnishes 1,2-isomers **3** with a synthetically acceptable level of enantiomeric excesses. ¹³ However, these methods suffer from serious problems such as follows: (1) the

former method is not applicable, at present, for synthesis of 1,4-isomers 2 with sufficient % ee for organic synthesis since only a moderate enantiomeric excess of 64% is reported in the asymmetric synthesis of the monoepoxide 4,14 (2) for the latter method, the preparation of 5-alkyl-1,3-cyclopentadiene requires harsh conditions keeping temperature at -78° C for extremely long periods (16–20 h) and the tedious isolation procedure after the hydroboration to separate the co-produced Ipc-OH. On the contrary, the present reaction provides both of the regioisomers, 1,4-isomers 2 and 1,2-isomers 3, from acetate 1 with high efficiency within several hours at the mild temperatures between -18and 0°C,15 and both enantiomers of 1 are easily available. Entries 2, 3, and 8 in Table 1 are suitable for the production of 2, while entries 1, 5, and 6 in Table 1 and entries 1, 5, and 6 in Table 2 are recommended for the preparation of 3. Moreover, the success in the installation of the c-C₆H₁₁ group shows applicability of the present reaction to other secondary alkyl groups. In addition, the regioisomeric products 2 and 3 are easily purified by chromatography on silica gel as the differences in the $\Delta R_{\rm f}$ value on TLC are large enough to allow the separation (ca. 0.1).

The relative stereochemistry of 2a was determined to be trans by comparison of their ¹H NMR spectra with those prepared from cyclopentadiene monoepoxide by Marino, ^{12a} who elucidated the stereochemistry on the basis of the difference in the chemical shift between the geminal protons at C(5): $\Delta\delta$ for trans and cis isomers being <0.3 ppm and >1 ppm, respectively. ¹⁶ In the same way, the trans stereochemistry was assigned to

Table 3. Reaction of 1 with reagents derived from R^TMgX and CuCN

Entry	Reagent ^a	Solvent	Temp. (°C)	Time (h)	Ratio of 2:3 ^b	Combined yield (%)°	Calcd yield (%) ^d	
							2 ^b	3 ^b
1	EtCu(CN)(MgCl)	THF	0	5	5:95	87	4	83
2	EtMgCl, CuCN (cat.)e	THF	-18	3	94:6	91	86	5
3	[Ph(CH2)3]2Cu(CN) (MgBr) ₂	Et ₂ O	-18	5	3:97	97	3	94 (96)
1	Ph(CH ₂) ₃ MgCl, CuCN (cat.) ^e	THF	-18	5	91:9	100	91 (87)	9
5	[CH ₂ =CH(CH ₂) ₉]- Cu(CN)(MgCl)	THF	0	5	4:96	100	4	96 (91)
5	CH ₂ =CH(CH ₂) ₉ MgCl, CuCN (cat.) ^e	THF	-18	5	95:5	102	97 (90)	5
7	$(c\text{-}C_6H_{11})_2\text{Cu(CN)}$ - $(\text{MgCl})_2$	$\mathrm{Et_2O}$	-18	4	7:93	85	6	79
3	(c-C ₆ H ₁₁)MgCl, CuCN (cat.) ^e	$\rm Et_2O$	-18	4	9:91	91	8	83
)	(c-C ₆ H ₁₁)MgCl, CuCN (cat.) ^e	THF	-18	5	89:11	78	69	9

^a Three (3) equiv.

^b Determined by ¹H NMR.

^c Determined by ¹H NMR with pyridine.

^d Isolated yields are given in parentheses.

e 10 mol%.

other 1,4-products **2b**–**e** successfully. Regarding 1,2-regioisomers, the *trans* stereochemistry for **3a**–**c** was determined by comparison of the ¹H NMR spectra of the corresponding saturated alcohols (synthesized by hydrogenation) with those of the authentic compounds prepared by another method. ¹⁷ The same (*trans*) stereochemistry was assigned for **3d** and **3e** by analogy. ^{18–20}

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture Government of Japan.

References

- (a) Harre, M.; Raddatz, P.; Walenta, R.; Winterfeldt, E. Angew. Chem., Int. Ed. Engl. 1982, 21, 480-492; (b) Sugai, T.; Mori, K. Synthesis 1988, 19-22; (c) Laumen, K.; Schneider, M. P. J. Chem. Soc., Chem. Commun. 1986, 1298-1299; (d) Laumen, K.; Schneider, M. Tetrahedron Lett. 1984, 25, 5875-5878; (e) Wang, Y.-F.; Chen, C.-S.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1984, 106, 3695-3696.
- (a) Deardorff, D. R.; Linde II, R. G.; Martin, A. M.; Shulman, M. J. J. Org. Chem. 1989, 54, 2759–2762; (b) Knight, S. D.; Overman, L. E.; Pairaudeau, G. J. Am. Chem. Soc. 1995, 117, 5776–5788; (c) Deardorff, D. R.; Savin, K. A.; Justman, C. J.; Karanjawala, Z. E.; Sheppeck II, J. E.; Hager, D. C.; Aydin, N. J. Org. Chem. 1996, 61, 3616–3622.
- 3. Torii, S.; Okumoto, H.; Akahoshi, F.; Kotani, T. *J. Am. Chem. Soc.* **1989**, *111*, 8932–8934.
- 4. For the construction of specific compounds, the Claisen rearrangement, ^{1c,d,4a} intramolecular radical reaction, ^{4b,c} and metathesis reaction of 1 has been developed: (a) Nara, M.; Terashima, S.; Yamada, S. *Tetrahedron* 1980, 36, 3161–3170; (b) Stork, G.; Sher, P. M.; Chen, H.-L. *J. Am. Chem. Soc.* 1986, 108, 6384–6385; (c) Keck, G. E.; Burnett, D. A. *J. Org. Chem.* 1987, 52, 2958–2960; (d) Stragies, R.; Blechert, S. *Tetrahedron* 1999, 55, 8179–8188.
- (a) Kobayashi, Y.; Takahisa, E.; Usmani, S. B. Tetrahedron Lett. 1998, 39, 597–600; (b) Kobayashi, Y. J. Synth. Org. Chem. 1999, 57, 845–855.
- Usmani, S. B.; Takahisa, E.; Kobayashi, Y. Tetrahedron Lett. 1998, 39, 601–604.
- One enantiomer is shown to indicate the relative stereochemistries properly. For convenience, racemic 1 was used for the present investigation.
- Tokoro, Y.; Kobayashi, Y. Chem. Commun. 1999, 807– 808.
- Kobayashi, Y.; Watatani, K.; Kikori, Y.; Mizojiri, R. Tetrahedron Lett. 1996, 37, 6125-6128.
- (a) Yamamoto, Y.; Yamamoto, S.; Yatagai, H.; Maruyama, K. J. Am. Chem. Soc. 1980, 102, 2318–2325;
 (b) Goering, H. L.; Tseng, C. C. J. Org. Chem. 1983, 48, 3986–3990;
 (c) Nakamura, E.; Aoki, S.; Sekiya, K.; Oshino, H.; Kuwajima, I. J. Am. Chem. Soc. 1987, 109, 8056–8066;
 (d) Ibuka, T.; Tanaka, M.; Nishii, S.; Ya-

- mamoto, Y. J. Am. Chem. Soc. **1989**, 111, 4864–4872; (e) Kang, S.-K.; Lee, D.-H.; Sim, H.-S.; Lim, J.-S. Tetrahedron Lett. **1993**, 34, 91–94.
- 11. The *cis* isomers corresponding to **2a** and **3a** were prepared by the Mitsunobu reaction.
- (a) Marino, J. P.; Fernández de la Pradilla, R.; Laborde,
 E. J. Org. Chem. 1987, 52, 4898–4913; (b) Lipshutz, B.
 H.; Woo, K.; Gross, T.; Buzard, D. J.; Tirado, R. Synlett
 1997, 477–478.
- (a) Partridge, J. J.; Chadha, N. K.; Uskokovic, M. R. J. Am. Chem. Soc. 1973, 95, 532-540; (b) Grethe, G.; Sereno, J.; Williams, T. H.; Uskokovic, M. R. J. Org. Chem. 1983, 48, 5315-5317; (c) Partridge, J. J.; Chadha, N. K.; Uskokovic, M. R. J. Am. Chem. Soc. 1973, 95, 7171-7172; (d) Chadha, N. K.; Batcho, A. D.; Tang, P. C.; Courtney, L. F.; Cook, C. M.; Wovkulich, P. M.; Uskokovic, M. R. J. Org. Chem. 1991, 56, 4714-4718.
- 14. Chang, S.; Heid, R. M.; Jacobsen, E. N. *Tetrahedron Lett.* **1994**, *35*, 669–672.
- 15. Representative experiment: Reaction with Bu-Cu(CN)(MgCl) (Table 1, entry 1): To a slurry of CuCN (224 mg, 2.50 mmol, from Aldrich) in THF (4.5 mL) was added n-BuMgCl (1.4 mL, 1.49 M in THF, 2.09 mmol) slowly at -18°C (ice/NaCl). After 20 min of stirring at -18°C, acetate 1 (100 mg, 0.70 mmol) dissolved in THF (0.5 mL) was added dropwise under an argon atmosphere. The reaction mixture was stirred at 0°C for 4 h. The reaction was quenched by the addition of saturated NH₄Cl and 28% NH₄OH, and the resulting mixture was extracted several times with Et₂O. The combined extracts were dried over MgSO₄ and concentrated by evaporation to afford a crude 7:93 mixture of 2a and 3a as determined by ¹H NMR spectroscopy. The product was purified by chromatography to give 3a (87 mg) in 89% yield. Reaction with BuMgCl/CuCN (cat.) (Table 1, entry 3): To a slurry of CuCN (63 mg, 0.70 mmol) in THF (14 mL) was added n-BuMgCl (14 mL, 1.49 M in THF, 20.7 mmol) slowly at -18°C. After 20 min of stirring at -18°C, acetate 1 (997 mg, 7.01 mmol) in THF (1 mL) was added dropwise. The reaction mixture was stirred at the same temperature for 5 h. The product was isolated as described above and was a 94:6 mixture of 2a and 3a, as determined by ¹H NMR spectroscopy. Chromatography of the crude product furnished 2a (832 mg) in 85% yield.
- Trost, B. M.; Verhoeven, T. R. J. Am. Chem. Soc. 1980, 102, 4730–4743.
- 17. Prepared by the epoxide ring opening of cyclopentene oxide (i) with $(R^T)_2Cu(CN)(MgCl)_2$ $(R^T = Et, Bu, (CH_2)_3Ph)$.

$$(R^{T})_{2}Cu(CN)(MgCl)_{2}$$

$$-18 \sim -10 \text{ °C}$$

$$i$$

$$THF$$

$$ii$$

- The observed stereoselectivity is in accordance with the previous papers: (a) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1984, 25, 3063–3066; (b) Gendreau, Y.; Normant, J. F. Tetrahedron 1979, 35, 1517–1521.
- 19. Attempted phenylation using PhCu(CN)(MgCl) in THF at 0°C for 7 h gave a mixture of the corresponding 1,4-and 1,2-isomers in a rather low yield of 41%.

20. Dependence of the hydroxyl group present in 1 on this reaction was supported by the reactions of 1 and the MOM ether of 1 using (PrO)SiMe₂CH₂MgCl and CuI (15 mol%) in THF. The 1,4-isomer was obtained selectively

in 87% isolated yield from 1, while the MOM ether afforded a 1:2 mixture of the 1,4- and 1,2-isomers, which were marginally separated by chromatography (unpublished result of M. Matsuumi in our laboratory).